Создан самый высококачественный лазер, ширина полосы спектра которого составляет всего 0.01 Гц
У большинства людей слово лазер всегда ассоциируется с термином «точность». Однако и в области лазерных технологий существует достаточно большое пространство для дальнейших усовершенствований. «Идеальный» лазер должен излучать свет со строго определенной длиной волны, однако реальные лазеры далеки от идеала, и они излучают свет в очень узкой полосе спектра. Ширина полосы спектра является одной из основных характеристик лазеров, определяющих его качество, а одним из направлений усовершенствований лазерных технологий является именно уменьшение этой ширины настолько, насколько это предоставляется возможным. И недавно международная группа ученых закончила создание лазера-рекордсмена, ширина полосы спектра которого составляет всего 10 мГц (0.01 Гц). Для сравнения, ширина полосы спектра большинства используемых в науке и промышленности лазеров составляет, в лучшем случае, несколько тысяч Герц.
Вторым показателем качества работы лазера является показатель стабильности излучаемого света, определяющий насколько долго лазер может излучать высококачественный луч света. Новый лазер, разработанный специалистами и учеными из Федерального физико-технического университета, Германия, и научной группы из института JILA (Joint Institute for Laboratory Astrophysics), США, является рекордсменом по обоим упомянутым выше параметрам. Помимо ширины полосы спектра в 10 мГц, этот лазер демонстрирует стабильность луча в течение 11 секунд. Этого времени достаточно для того, чтобы излученный лазером свет смог преодолеть расстояние в 3.3 миллиона километров, что приблизительно в десять раз больше расстояния между Землей и Луной.
Новая лазерная система обладает столь высоким качеством, что ее невозможно сравнить с любым другим существующим лазером. И для того, чтобы произвести сравнительные испытания, ученым пришлось изготовить два одинаковых образца лазера и сравнить их друг с другом. А для сравнения качества работы использовалась сложная система зеркал и других оптических компонентов, которая представляла собой высокостабильный оптический резонатор, длиной в 21 сантиметр, настроенный на определенную длину волны света. Помимо этого, были использованы и другие устройства, которые позволили избежать влияния на производимые измерения таких факторов, как колебания атмосферного давления, влажности и температуры.
Проведенные учеными измерения и эксперименты позволили им собрать данные, на основе которых и были вычислены основные параметры новых лазеров. А дальнейшие работы в данном направлении, включающие использование новых материалов для зеркал лазера, технологии снижения температуры в объеме резонатора лазера и т.п., позволят добиться уменьшения ширины полосы спектра лазера до уровня не более 1 мГц.
И в заключение следует заметить, что новые сверхвысококачественные лазеры будут использоваться в новых сверхвысокоточных атомных часах, которые как раз и являются полем деятельности группы JILA, для проведения более измерений явлений, связанных со сверхохлажденными атомами и в других областях, где требуется очень точный отсчет коротких промежутков времени.
ХХХ
Управление свободными электронами — путь к созданию эффективных реакторов ядерного синтеза
Для того, чтобы заставить атомы легких элементов объединяться в атомы более тяжелых элементов, требуются огромные давления и температуры. Но не только эти два фактора являются источниками опасности в камере реактора термоядерного синтеза. Еще одним видом потенциальной опасности являются высокоэнергетические свободные электроны, возникающие в плазменном шнуре в больших количествах. Создаваемое ими электрическое поле может оказать пагубное влияние на весь процесс в целом, а сам поток этих электронов, разогнанных до очень высокой скорости, может послужить причиной выхода из строя некоторых узлов и даже привести к нарушению целостности элементов защиты внутренней поверхности камеры реактора.
Группа ученых из Технологического университета Чалмерса (Chalmers University of Technology), Швеция, разработала новый метод замедления свободных электронов. Это, по их мнению, должно сделать реакции термоядерного синтеза более стабильными и контролируемыми, а сами реакторы — более безопасными и эффективными.
Решением проблемы замедления свободных электронов стали ионы более тяжелых газообразных элементов, таких, как неон и аргон. Двигающиеся с высокой скоростью электроны попадают под влияние электрических полей, обусловленных зарядом тяжелых ионов. Это создает сопротивление, которое замедляет электроны, при этом, кинетическая энергия электронов снова превращается в тепловую и идет на инициализацию или поддержание реакций термоядерного синтеза. Все это, в свою очередь, делает реакции синтеза более стабильными и управляемыми.
Данный метод замедления свободных электронов был проверен при помощи расчетов сложнейшей математической модели, построенной на принципах и законах физики плазмы. Ученые производили расчеты, меняя каждый раз набор условий и новый метод всегда срабатывал, эффективно ограничивая энергию свободных электронов.
К сожалению, в настоящее время нет ни одного функционирующего реактора термоядерного синтеза, на котором можно произвести практическую проверку работоспособности нового метода замедления свободных электронов. Но, с учетом реализации некоторых масштабных проектов в этой области, возможность практической проверки представится шведским ученым в не таком уж и далеком будущем.
ХХХ
Новый тип трехмерного дисплея позволяет избежать усталости глаз при использовании виртуальной или дополненной реальности
В настоящее время наблюдается бум развития всевозможных технологий виртуальной и дополненной реальности. Эти технологии реализуются при помощи специальных очков и устройств, которые позволяют человеку полностью погрузиться в виртуальную среду или накладывают изображения цифровых объектов на изображение реальной окружающей среды. К сожалению, эти технологии не становятся массовыми не только из-за относительно высокой стоимости специализированного оборудования, длительное пребывание в виртуальной среде приводит к повышенной нагрузке на мозг человека и вызывает усталость глаз, что приводит к возникновению неприятных ощущений.
Решением проблемы, позволяющим максимально увеличить комфорт во время использования технологий виртуальной реальности, является новый тип трехмерного дисплея, разработанный исследователями из университета Иллинойса. Опытный образец такого дисплея имеет размеры 1 на 2 дюйма ( 2.5 на 5 сантиметров). Этот дисплей воспроизводит действительное трехмерное изображение, которое воспринимается глазом точно так же, как и изображение окружающего нас реального мира.
Реальные трехмерные изображения получаются за счет использования метода, называемого оптическим отображением (optical mapping). Такой метод подразумевает разделение области экрана на несколько групп, на каждой из которых формируется отдельное двухмерное изображение. Затем эти отдельные изображения обретают каждое свою глубину, а специализированные программные алгоритмы обеспечивают плавные переходы глубины так, что в результате получается одно непрерывное трехмерное изображение.
Ключевым компонентом новой системы является устройство пространственного мультиплексирования, которое как раз и «выдвигает» определенные области изображения на заданную глубину. В данном случае устройство пространственного мультиплексирования состоит из пространственных модуляторов света, которые изменяют проходящий сквозь них свет по определенному алгоритму.
Подобная технология может работать совместно с любым типом дисплеев, но исследователи использовали OLED-дисплей из-за его высокой разрешающей способности, контрастности и цветопередачи.
В своей дальнейшей работе исследователи будут стараться уменьшить размер, вес системы и количество потребляемой ею энергии. «В будущем мы попробуем заменить пространственные модуляторы света другими оптическими компонентами, такими, как элементы объемной голографии» — пишут исследователи, — «Эти компоненты не только позволят уменьшить габариты устройства, они сами по себе потребляют гораздо меньше энергии, и их уже можно будет использовать в очках и устройствах виртуальной реальности».
ХХХ
Laser SETI — проект по поиску оптических сигналов, являющихся следами деятельности внеземных цивилизаций
В настоящее время группа энтузиастов ведет сбор средств через сервис общественного финансирования Indiegogo, при помощи которых будет реализован первый этап проекта под названием Laser SETI. Сейчас уже собрано 53 тысячи долларов из 100 необходимых, и в случае успешного сбора полной суммы в определенных местах на земном шаре будут установлены два специализированных датчика, которые начнут просматривать ночное небо, выискивая кратковременные вспышки лазерного света, являющихся следами деятельности внеземных цивилизаций.
Дальнейшая реализация проекта Laser SETI будет заключаться в увеличении количества активных датчиков, которые, в конце концов, охватят своим «вниманием» всю площадь ночного неба. Сеть развертываемых датчиков для увеличения надежности и достоверности собираемых данных будет обладать избыточностью. Это станет возможным благодаря использованию серийно выпускаемых недорогих оптических датчиков, и, как показали эксперименты, проведенные в течение двух последних лет, данная технология является вполне работоспособной.
Отметим, что эксперимент Laser SETI является «родственником» известного эксперимента SETI (Search for Extraterrestrial Intelligence), в рамках которого ведутся поиски радиосигналов от внеземных цивилизаций. Предполагается, что в будущем эти два эксперимента будут работать совместно, обмениваясь данными и наводя свои датчики и антенны на те области неба, в которых будет замечена необычная активность в радио- или оптическом диапазоне.
Датчики эксперимента Laser SETI обладают достаточно высокой чувствительностью и быстродействием, они способны уловить случайные кратковременные вспышки света, длящиеся одну миллисекунду или меньше. Постоянное наблюдение за небом позволит выявить периодические сигналы, чередующиеся с большим периодом, который может составлять дни, недели и месяца.
Поиск сигналов будет производиться при помощи специализированного программного обеспечения, которое сможет отфильтровывать случайные и нестабильные сигналы, оставляя для дальнейших исследований лишь наиболее достоверные и интересные данные. И будем надеяться, что совместная работа проектов Laser SETI и SETI позволит людям впервые найти следы деятельности внеземных цивилизаций.
ХХХ
Создана звуковая «пушка», способная воздействовать на «умные» устройства
На конференции Black Hat, посвященной технологиям безопасности, которая проходила недавно в Лас-Вегасе, представители компании Alibaba Security продемонстрировали технологию воздействия звуком и ультразвуком на «умные» устройства, работа которых зависит от функционирования гироскопов, акселерометров и других датчиков на основе микроэлектромеханических систем (microelectromechanical systems, MEMS). Такая звуковая «пушка» теоретически может использоваться для сбивания беспилотников, дезориентации роботов, систем виртуальной и дополненной реальности, и для нападения на системы самоуправляемых автомобилей-роботов.
В большинстве гироскопических датчиков используются микроэлектромеханические системы с одним или двумя механическими колебательными элементами. Каждый из этих элементов колеблется на собственной резонансной частоте, которая зависит от пространственного положения датчика, от скорости движения и от ускорения. А сигнал такого датчика является результатом вычитания или сложения частот колебаний чувствительных элементов. Внешний источник колебаний, частота которых соответствует резонансной частоте колебаний элементов датчика, может вмешаться в работу этого датчика, заставляя его передавать устройству искаженные и недостоверные данные.
Ван Зэнгбо (Wang Zhengbo) и Ван Канг (Wang Kang), исследователи из Alibaba Security, продемонстрировали то, как их специально настроенный генератор ультразвука заставил перестать работать некоторые из узлов мобильных телефонов Apple iPhone 7 и Samsung Galaxy S7. В ходе дальнейшей демонстрации исследователи показали, как точно такой же метод выводит из строя беспилотник DJI, очки виртуальной реальности, и игрушечного робота, способного самостоятельно передвигаться и поддерживать равновесие.
В меньшей степени уязвимость к данному виду нападения продемонстрировал электроскуттер Xiaomi, прочный пластиковый корпус которого подавлял акустические колебания, не давая им проникать в область расположения MEMS-датчиков. Однако в данном случае проблема легко решается лишь за счет увеличения мощности излучателя.
Ван Канг объяснил, что они продемонстрировали этот вид уязвимости устройств с MEMS-датчиками для того, чтобы производители учли это и приняли соответствующие меры. Благо, что сделать это можно достаточно просто, путем размещения вокруг датчиков или управляющих контроллеров специальной звукоизоляции, эффективно работающей в области резонансных частот датчиков. И такие методы защиты должны стать неотъемлемой частью устройств, неправильная работа которых может стать угрозой для жизни или здоровья человека.
ХХХ
Новое керамическое покрытие сделает полеты на гиперзвуковых скоростях на шаг ближе к реальности
Идея полетов на гиперзвуковых скоростях витает в научном и технологическом мире уже достаточно долго. Но создание летательного аппарата, способного двигаться со скоростью от 5 Махов (6 125 километров в час) или быстрее, требует наличия новых материалов, некоторые из которых находятся еще на стадии разработки. К таким материалам можно смело отнести защитное покрытие аппаратов, материал, который без разрушения и деградации должен выдерживать длительный нагрев до температуры в 3 тысячи градусов Цельсия, возникающий из-за трения об воздух.
И даже если высокая температура не расплавит или деформирует края плоскостей, носовой обтекатель, лопасти турбин и другие элементы конструкции гиперзвукового летательного аппарата, это заставит материал, из которого изготовлены элементы, стать более тонким и хрупким, подверженным точечной коррозии из-за его интенсивного окисления при высокой температуре.
Группа исследователей из Манчестерского университета, Великобритания, и Центрального Южного университета, Китай, уже достаточно давно работала над поисками новых типов высокотемпературной керамики, не поддающейся окислению при высокой температуре, обладающей высокой прочностью и некоторой упругостью. Длительные поиски такой керамики дали результат — новый вид карбидного покрытия, которое, согласно результатам проведенных испытаний, в 12 раз по всем основным параметрам превосходит все виды известной высокотемпературной керамики, такой, как карбид циркония (ZrC).
Образцы новой керамики были изготовлены в Институте порошковой металлургии Центрального Южного университета, а дополнительная обработка и испытания этих образцов были проведены в лабораториях Манчестерского университета. Дополнительная обработка проводились при помощи установки Reactive Melt Infiltration (RMI), которая бомбардирует образцы материала разогретым до высокой температуры потоком ионов циркония, бора, титана и других элементов. Обычно воздействие высокой температуры «изгоняет» из состава керамики те элементы, которые придают ей высокие защитные свойства, что создает предпосылки для ее деградации. Обработка керамики на установке RMI позволила «насытить» ее дополнительными элементами, что сделало ее несколько тяжелее и более устойчивой к воздействию высоких температур.
«Найденная нами высокотемпературная керамика еще не дотягивает до идеала, она еще не выдерживает длительного пребывания в чрезвычайных условиях и дорога в производстве сама по себе. Тем не менее, все это является демонстрацией потенциала нового типа керамики с точки зрения уменьшения ее испарения и повышенной сопротивляемости окислению при высокой температуре» — рассказывает Пинг Ксиэо (Ping Xiao), профессор материаловедения Манчестерского университета, — «Помимо этого мы показали, что внедрение в состав керамики каркаса из углеродистых волокон является эффективным способом улучшения сопротивляемости материала разрушению от теплового воздействия».
ХХХ
Ученые составили математическую модель, описывающую процесс формирования магнитного поля Земли
Известно, что Земля является гигантским магнитом, имеющим Южный и Северный магнитные полюса, как и любой другой магнит. Создаваемое Землей магнитное поле играет одну из главных ролей в нашей жизни, оно защищает нас от потоков высокоэнергетических заряженных частиц, излучаемых Солнцем или прибывающих из глубин космического пространства.
Ученые считают, что магнитное поле Земли образуется в результате процесса, называемого динамо. Эта гигантская динамо-машина представляет собой перемещающийся слой жидкого расплавленного металла, находящийся на границе ядра Земли, движение которого связано с вращением планеты. Все это, согласно законам физики, производит электрическое поле, которое, в свою очередь, вырабатывает магнитное поле.
Для детального изучения всех процессов, ответственных за производство магнитного поля Земли, ученые-физики из института L’Institut des sciences de la Terre, Франция, создали математическую модель, расчеты которой позволили получить захватывающее видео, на котором в разрезе видно ядро, температурные градиенты и потоки, циркулирующие глубоко в недрах планеты.
Все частички модели подчиняются традиционным законам физики, в соответствии с которыми в ядре Земли возникают потоки из жидкой смеси расплавленного железа и никеля и их завихрения. В районе полюсов планеты можно увидеть вихри, носящие циркулирующий характер. Все это указывает на то, что магнитное поле Земли не является статичным, оно постоянно «дышит», изменяя свою силу и форму.
Естественно, что данная математическая модель, построенная на математических итерациях, хоть и является самой реалистичной на сегодняшний день, может быть очень далекой от реальности в силу невозможности проведения физических измерений различных параметров в ядре Земли. Тем не менее, такие математические расчеты дают ученым возможность лучшего понимания особенностей поведения магнитного поля планеты, что можно использовать для увеличения точности навигационных систем, для прогнозирования климатических изменений и многого другого.
ХХХ
Ученым удалось создать «самые квадратные» кристаллы льда
Кристаллы льда, о которых пойдет речь ниже, вы никогда не сможете получить в морозильной камере вашего холодильника. Потому что речь идет не об идеальной кубической форме кусочков льда, а об их идеальной кубической кристаллической решетке, состоящей из молекул воды. Такие кристаллики «идеального кубического» льда встречаются только в облаках на большой высоте, а на Земле их получить весьма и весьма тяжело даже в лабораторных условиях.
Практически весь лед, формирующийся в естественных условиях, из которого состоит также и снег, имеет кристаллическую решетку с шестиугольной симметрией. И лишь кристаллизация воды при строго заданных условиях может сформировать кубическую кристаллическую решетку. А изучение чистого «кубического» льда может дать ученым массу данных для улучшения существующих математических моделей взаимодействия высотных облаков с солнечным светом, с атмосферой и влияния всего этого на климатические изменения.
Ученые уже достаточно давно пытаются получить «кубический» лед в лабораторных условиях. Однако, такой лед является нестабильным и максимум чего удавалось получить, так это гибридные кристаллы льда, на 70 процентов состоящие из кубической формы и на 30 процентов — из шестиугольной.
Исследователи из университета Огайо при помощи некоторых уловок получили кристаллы льда, состоящие из кубической формы уже на 80 процентов, что является своеобразным рекордом. Для этого ученые выбрасывали в объем камеры из двух форсунок азот и водяной пар под высоким давлением. Когда эти газы расширялись, они охлаждались и водяной пар конденсировался в капельки, в сто тысяч раз меньшие, чем обычная дождевая капля. При этом, капельки жидкой воды существовали очень короткое время при температуре -48 градусов Цельсия, после чего они замораживались и превращались в лед в течение миллионной доли секунды.
Для измерения «кубатуры» получившихся ледяных кристаллов исследователи использовали дифракцию рентгеновского излучения, вырабатываемого источником Linac Coherent Light Source (LCLS) Национальной лаборатории линейных ускорителей SLAC. Геометрические размеры получившихся дифракционных колец и их амплитуда указали на то, что минимум 80 процентов льда в анализируемом образце имеет кубическую форму кристаллической решетки.
В настоящее время ученым еще неизвестны процессы и явления молекулярного масштаба, благодаря которым вода при переохлаждении и быстром замораживании формирует кубические кристаллы.
«Этот вид процесса кристаллизации настолько сложен и быстр, что мы нуждаемся в самом современном дополнительном оборудовании для того, чтобы только начать видеть, что происходит внутри воды» — рассказывает Клодиу Стэн (Claudiu Stan), научный сотрудник института PULSE лаборатории SLAC, — «Вполне вероятно, что в будущем у нас появится необходимое оборудование и нам удастся создать и подтвердить экспериментально математические модели, описывающие процессы формирования необычных кристаллов льда».
ХХХ
Ученые выяснили, что жидкая вода может существовать в двух разных формах одновременно
Из курса школьной физики нам известно, что вода, одно из самых распространенных веществ на земном шаре, может существовать в трех формах — в виде водяного пара, жидкости и льда. Однако, группа исследователей из Швеции выяснила, что на самом деле все обстоит гораздо сложнее, при низких температурах, близких к точке замерзания, вода представляет собой смесь из двух жидкостей, кардинально отличающихся друг от друга по плотности и молекулярному строению.
«При некоторых пограничных условиях вода ведет себя весьма странно» — рассказывает Андерс Нильсон (Anders Nilsson), профессор физической химии из Стокгольмского университета, — «При низкой температуре вода существует в виде смеси двух различных жидкостей».
Исследуя молекулярную структуру охлажденной почти до точки замерзания воды при помощи рентгеновского излучения, ученые обнаружили наличие в объеме воды двух видов жидкости, с высокой плотностью и с более низкой, отличающиеся друг от друга пространственным положением молекул воды и их количеством в единице объема. Этот факт служит первым доказательством теории, выдвинутой Андерсом Нильсоном уже несколько лет назад, согласно которой вся вода на Земле находится в постоянном движении, переходя из одной формы в другую. А эти фазовые переходы, затрагивающие бесконечно малые объемы воды, длятся всего несколько пикосекунд.
Если «двойственный характер» воды будет подтвержден результатами других исследований, это послужит объяснением некоторых необычных свойств жидкой воды, в частности, ее высокой теплоемкости, и факта, что вода обретает свою максимальную плотность только при температуре в 4 градуса Цельсия и выше.
Пока еще не совсем ясно, к каким практическим вещам может привести сделанное шведскими учеными открытие. Тем не менее, углубленное понимание свойств воды может привести к разработке новых и более эффективных технологий очистки и опреснения, которые, в свою очередь, станут решением одной из самых острых проблем в некоторых уголках земного шара.
ХХХ
Беспилотники обрели способность «видеть» сквозь стены при помощи сигналов Wi-Fi
Исследователи из Калифорнийского университета в Санта-Барбаре продемонстрировали работу новой системы, способной «заглядывать» сквозь стены и составлять трехмерную карту внутренних помещений при помощи сигналов беспроводной связи стандарта Wi-Fi. В состав этой системы входят два восьмироторных беспилотника профессионального класса, один из которых выступает в роли передатчика сигнала, а второй — в качестве приемника. Такая система может быть с успехом использована для обследования помещений, разрушенных в результате стихийных бедствий и техногенных катастроф, в археологических исследованиях, для контроля целостности структур различных сооружений и, конечно, для проведения операций по разведке и наблюдению.
Как уже упоминалось выше, один из беспилотников непрерывно излучал сигнал стандарта Wi-Fi, а другой, расположенной с другой стороны исследуемого помещения, принимал сигнал и измерял его мощность (received signal strength indicator, RSSI). Все собираемые данные передавались на компьютер, который, зная положение каждого беспилотника в данный момент времени и уровень принимаемого сигнала, составлял трехмерную карту пространства с достаточно неплохой разрешающей способностью.
Наиболее интересным во всем этом является то, что для создания подобной системы не нужны никакие оригинальные, сделанные на заказ узлы и детали. Все оборудование, которое было установлено на беспилотники, является стандартным и выпускается серийно. В состав этого оборудования входит обычный Wi-Fi-маршрутизатор, две направленные антенны соответствующего диапазона, компьютер Raspberry Pi и планшетный компьютер Tango, выполнявший роль навигационной системы.
Данная работа стала продолжением предыдущей работы, выполненной группой, под руководством профессора Ясэмина Мостофи (Yasamin Mostofi). В той предыдущей работе исследователи создали систему, способную делать снимки того, что находится за стенами или другими препятствиями, используя для этого разные виды стандартных радиочастотных сигналов, в том числе и Wi-Fi. Трехмерные же изображения внутреннего пространства получаются из-за возможностей, предоставляемых беспилотниками, которые, перемещаясь, выполняют роль подвижного элемента сканирующего устройства.
И в заключение следует отметить, что подобная система была разработана в свое время исследователями Технологического университета в Мюнхене (Technical University of Munich). Однако, изображения, генерируемые созданной немецкими учеными, являются не реальными изображениями, а моделями, построенными по собираемым данным. И, как следствие, они являются более грубыми и низкокачественными.
Иллюстрация: 100balov.info
http://www.dailytechinfo.org/auto/