Содержание
ВВЕДЕНИЕ | 1 | |
ЗОЛЬ-ГЕЛЬ ТЕХНОЛОГИЯ | 3 | |
1.1. | Алкоксидный метод золь-гель синтеза | 4 |
1.2. | Негидролитический метод золь-гель синтеза | 10 |
1.3. | Коллоидный метод золь–гель синтеза | 12 |
1.4. | Растворимые силикаты, как прекурсоры при золь-гель технологии получения нанокомпозитов | 13 |
1.5. | Получение нанокомпозитов через аэрогели | 18 |
СМЕСИТЕЛЬНЫЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ НАНОКОМПОЗИТОВ | 22 | |
РАЗЛИЧНЫЕ ТИПЫ НАНОФАЗЫ | 24 | |
3.1. | Наноразмерный наполнитель | 24 |
3.2. | Наноразмерное связующее | 27 |
3.3. | Синтез нанофазы в структуре матрицы композита | 29 |
ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА СТРУКТУРУ И СВОЙСТВА ГИБРИДНЫХ МАТЕРИАЛОВ | 30 | |
4.1 | Упаковка сферических наночастиц наполнителя | 30 |
4.2. | Упаковка волокнистых наночастиц наполнителя | 35 |
4.3 | Наноматериалы на основе слоистых частиц | 37 |
ЗАКЛЮЧЕНИЕ | 39 | |
ЛИТЕРАТУРА | 39 |
Введение
Композиционный материал, композит – искусственно созданный неоднородный сплошной материал, состоящий из двух или более компонентов с чёткой границей раздела между ними. В большинстве композитов (за исключением слоистых) компонен-ты можно разделить на матрицу или связующее, и включённые в неё армирующие элементы или наполнители. В композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жёсткость и т. д.), а матрица обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды. Также композитами принято называть многокомпонентные системы, которые состоят из полимерной, металлической, углеродной, керамической или другой основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодисперсных частиц и т.д. [1,2]. Использование композиционных материалов в различных инженерных приложениях стало почти искусством.
Неорганические неметаллические материалы, такие как стекло или керамику, люди получали тысяч лет, из твердых веществ, с применением высоких температур. В качест-ве сырья, использовались природные минералы, и обработка этих материалов обычно включала измельчение твердых исходных веществ, и спекание их смеси при температу-рах превышающих 700 ℃. В частности, оксидная керамика и стекло привлекают к себе внимание в последние столетия в связи с их тепловой долговечностью и химической инертностью. Их обычно получают из оксидных минералов путем смешивания с различными добавками, для получения заданных композиций. Высокие температуры, как правило, необходимы для этих твердофазных реакций, так как исходное сырье используются в виде порошков, и они вступают в реакцию в твердом состоянии или в расплавах с образованием конечного продукта. Образование продукта в твердом состоянии возможно, только если ионные компоненты, диффундируют через зерна материала. Для этого им приходится преодолевать достаточно высокие силы связи в кристаллах, а для этого требуется повышение температуры. Многие современные устройства электроники или оптики требуют специальных форм или применения процедур склеивания керамических деталей, и к ним недопустимо применение высокотемпературной обработки. Кроме того, для некоторых керамических изделий не доступно применение порошковой технологии, например, для тонких оксидных пленок. В связи с этим, классические твердотельные реакции имеют следующие недостатки:
- высокие температуры и длительное времени реакции, связанные с необходимостью движения ионов через твердое или формирования расплавов,
- условия реакции и качество продукции в значительной степени зависят от условий подготовки сырья (измельчение, прессование, и т.д.),
- конкретные морфологии, во многих случаях не доступны с помощью классических методов (тонкие пленки, пористые материалы и т.д.),
- сочетание с органическими или биоматериалами не возможно из-за экстремальных условий изготовления.
Эти проблемы нашли свое решение с использованием композиционных материалов. Особое место в этой группе материалов занимают нано материалы и нанокомпозиты [2].
Наноматериалы — материалы, созданные с использованием наночастиц и/или посредством нанотехнологий, обладающие какими-либо уникальными свойствами, обусловленными присутствием этих частиц в материале. К наноматериалам относят объекты, один из характерных размеров которых лежит в интервале от 1 до 100 нм [3]. Выделяют два основных способа создания нанообъектов:
- Уменьшение размера макрообъектов (диспергирование, дезинтегрирование, измельчение до кластерного уровня с помощью шаровых мельниц или при помощи механохимического синтеза);
- Создание наноструктур из атомов и молекул (кристаллизация) кластеризация, наноструктурирование, структурообразование, конденсация коагуляция, полимеризация и т.д.
В группе наноматериалов выделяют следующие типы:
- нанопористые структуры;
- наночастицы;
- нанотрубки и нановолокна;
- нанодисперсии (коллоиды);
- наноструктурированные поверхности и пленки;
- нанокристаллы и нанокластеры;
- нанокомпозиты.
Нанокомпозит — многокомпонентный материал, состоящий из основы (матрицы) и наполнителя — наноматериала с модифицированной поверхностью и обладающего новым улучшенным комплексом свойствами. В некоторых случаях может наблюдаться инверсия наноразмерности у связующего и наполнителя.
Сами наноматериалы делят по назначению на функциональные, композиционные и конструкционные.
По количеству измерений они делятся на:
- нульмерные/ квазинульмерные (квантовые точки, сфероидные наночастицы);
- одномерные/ квазиодномерные (квантовые проводники, нанотрубки);
- двумерные/квазидвумерные (тонкие пленки, поверхности разделов);
- трехмерные/квазитрехмерные (многослойные структуры с наноразмерными дислокациями, сверхрешетки, нанокластеры, нанокомпозиты, супрамолекулярные образования).
Свойства наноматериалов, как правило, отличаются от аналогичных материалов в массивном состоянии. Например, у наноматериалов можно наблюдать изменение оптических, магнитных, тепло- и электропроводных свойств. Для особо мелких материалов можно заметить изменение температуры плавления в сторону её уменьшения.
В настоящем обзоре мы остановимся отдельной группе нанокомпозитов – органоминеральных гибридных композиционных материалах. На практике, нанокомпозиционные материалы, содержат усиливающие элементы с чрезвычайно высокой удельной поверхностью, погруженные, например, в полимерную матрицу. В этом случае органическая и неорганическая составляющие формируют независимые фазовые образования, поэтому контакт осуществляется на уровне раздела фаз [4].
Перспективными современными композитными материалами являются такие, в которых органическая и неорганическая составляющие взаимодействуют между собой на молекулярном уровне. Они получили название «полимерные гибриды» [5,6]; понятие «гибрид» было принято для того, чтобы подчеркнуть, молекулярный характер взаимодействия компонентов.
Гибридные материалы – материалы, полученные за счёт взаимодействия химически различных компонентов, чаще всего органических и неорганических, формирующих определенную пространственную структуру, отличающуюся от структур исходных реагентов, но часто наследующую определенные мотивы и функции исходных структур.
Особенностью новых композитных материалов является то, что они имеют нанометровые параметры своих структурных элементов (размер хотя бы в одном из направлений составляет не более 100 нм); это либо нанометровые расстояния между решетками и слоями, которые образованны полимерными и неорганическими ингредиентами, либо нанометровые размеры формирующихся частиц, в том числе и металлсодержащих [7].
В качестве неорганических соединений – предшественников (прекурсоров) – обычно используют оксиды кремния, алюминия, титана, циркония, ванадия, молибдена, глины, слоистые силикаты и цеолиты, фосфаты и халькогениды металлов, оксихлорид железа, графит, различные металлы и т.д.. В качестве полимерной составляющей применяют не только карбоцепные, но и элементоорганические, как правило, кремнийорганические полимеры.
С экологической точки зрения оптимальными являются бессточные способы получения композитных материалов, в частности, золь-гель технология (sol-gel или spin-on-glassprocess). Этот способ позволяет исключить многочисленные стадии промывки, так как в качестве исходных веществ используют соединения, не вносящие примеси в состав конечного продукта [8].
Золь – это коллоидная дисперсия твердых частиц в жидкости. Коллоиды – это суспензии, в которых дисперсная фаза на столько мала (1…1000 нм), что гравитационными силами можно пренебречь. Доминирующими являются короткодействующие силы, такие как ван-дер-ваальсовы, а также кулоновские силы, притяжение и отталкивание между поверхностными зарядами. Инерция дисперсной фазы мала, поэтому возникает броуновское движение частиц (броуновская диффузия), т. е. случайные скачки, вызываемые кинетической энергией, сообщаемой за счет столкновений частиц золя между собой и с молекулами дисперсионной среды. Важным фактором является то, что частицы дисперсной фазы являются не молекулами, а агрегатами, состоящими из множества молекул [10].
Образование коллоидного геля происходит по другому механизму. Частицы дисперсной фазы (мицеллы) под воздействием дисперсионных сил притяжения взаимодействуют друг с другом, образуя остов неорганического полимера.
Гель из полимерного золя образуется в процессе полимеризации мономеров и полимеров, находящихся в золе. Постепенно из полимеризующихся разветвленных олигомеров образуется гигантский кластер. Когда этот кластер достигнет макроскопических размеров и распространится на весь объем золя, говорят, что произошел переход золя в гель. При этом гель будет состоять, с одной стороны, из непрерывной структурной сетки – твердого скелета (остова), а с другой – из непрерывной жидкой фазы.
Образование коллоидного геля происходит по другому механизму. Частицы дисперсной фазы (мицеллы) под воздействием дисперсионных сил притяжения взаимодействуют друг с другом, образуя остов неорганического полимера. Гель состоит из непрерывных твердой и жидкой фаз, которые имеют коллоидные размеры (от 1 до 1000 нм). Эти фазы являются непрерывными взаимопроникающими системами.